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A B S T R A C T

Software packages are being developed for automated extraction of plasticity parameters from indentation data
(primarily load-displacement plots, although residual indent dimension data are also likely to be useful). Their
design must be closely integrated with the associated experimental measurements. The procedure involves
iterative FE simulation of the penetration of a spherical indenter into a sample, with automated convergence on
a best-fit set of parameter values characterizing the yielding and work hardening response of the material (in a
constitutive law). This paper outlines the main issues involved in optimization of experimental conditions and
model formulation. Illustrative experimental data are presented from extruded rods of 5 metallic materials.
Experimental issues include the dimensional scales of the indenter radius, R, and the depth of penetration, δ,
with δ/R (the “penetration ratio”) being of particular significance. A brief study is presented of the potentially
conflicting requirements of deforming a volume large enough to represent the response of the bulk and having a
value of δ/R that creates plastic strains in a range that will adequately capture the work hardening response. A
key conclusion of this study is that a “mid-range” indentation facility is likely to be optimal, with a load cap-
ability of at least a few kN, able to create δ/R values up to∼40%, with R∼0.5–2mm. Other experimental issues
include displacement measurement techniques, calibration of machine compliance and the possibility of ma-
terial anisotropy (due to crystallographic texture). Issues related to formulation of the FE model include spe-
cification of the domain and mesh, selection of the constitutive plasticity law and simulation of interfacial
friction. The convergence algorithm used is also described.

1. Introduction

There has been increasing focus over the past decade or two on
obtaining (true) stress-strain curves (well beyond the elastic limit) from
outcomes of instrumented indentation experiments (mainly load-dis-
placement plots, although residual indent shapes can also be used).
Since these stress-strain curves are regarded as prime indicators of the
plasticity characteristics of a material, and indentation is a much more
versatile and convenient procedure than conventional uniaxial testing,
this quest has a strong motivation. The approaches used fall into two
main categories. Many studies (Taljat et al., 1998; Herbert et al., 2001;
Basu et al., 2006; Kang et al., 2006; Pelletier 2006; Guelorget et al.,
2007; Xu and Chen 2010; Hamada et al., 2012; Hausild et al., 2012;
Pathak and Kalidindi 2015) have sought to identify analytical for-
mulations that can be applied to the experimental data. This has ob-
vious attractions, since such a formulation, even if involving relatively
complex expressions and algorithms, would allow rapid extraction of
the stress-strain curves via a well-defined path. Unfortunately, the stress

and strain fields beneath an indenter, even one with a simple shape
such as a sphere, are complex and change with penetration depth,
making it very difficult to identify realistic analytical relationships. The
prospects for this approach, certainly in terms of having a robust pro-
cedure that can be applied to a wide range of materials, are not pro-
mising.

The alternative approach (Dao et al., 2001; Bolzon et al., 2004;
Bouzakis and Michailidis 2004; Bouzakis and Michailidis 2006;
Pelletier 2006; Guelorget et al., 2007; Heinrich et al., 2009; Dean et al.,
2010; Bobzin et al., 2013; Patel and Kalidindi 2016; Dean and Clyne
2017) is to use FEM modeling to (accurately) capture these evolving
stress and strain fields, with the challenge then being to establish the
stress-strain curve most closely consistent with measured indentation
outcomes. This is a major challenge, but the approach is conceptually
transparent, rigorous and simple (which cannot be said of the first type
of methodology). However, its wide implementation has been inhibited
by the need to carry out FEM modeling runs that are specific to each
individual case, and also by uncertainties about how to converge on the
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“best fit” stress-strain curve and how to assess the confidence that can
be placed in it.

For a material with a given (uniaxial) stress-strain curve, assumed to
be applicable to deviatoric (von Mises) components of stress and strain
for multi-axial situations, FEM can readily be used to predict the load-
displacement plot (and residual indent dimensions). This can be done
for any given indenter shape, provided that the important boundary
conditions (potentially including the effects of friction between in-
denter and sample) can be established. However, the inverse problem of
inferring the stress-strain relationship from such a load-displacement
plot is much more challenging, with considerable scope for ambiguity,
such as different stress-strain relationships giving effectively the same
load-displacement plot.

For both types of approach, it has been recognized (Futakawa et al.,
2001; Bucaille et al., 2003; Capehart and Cheng 2003; Chollacoop et al.,
2003; Cheng and Cheng 2004; Ma et al., 2012) that there may be ad-
vantages in obtaining more comprehensive sets of experimental data.
For example, doing repeat runs with indenters having different shapes
has often been proposed, and indeed it is logical that this should be
helpful, since the way that the stress-strain curve influences the in-
dentation outcomes will be different with different indenter shapes. It
has occasionally been suggested that simply using different indenter
sizes may also be helpful, but this is unlikely to create benefits, since the
stress and strain fields beneath an indenter are scale-independent. For
example, the fields created by penetration of a sphere to a depth cor-
responding to, say, 10% of its radius are identical for radii of, say,
10 µm and 10mm. The absolute value of the load at this point will be
106 greater for the latter case, while the penetration will be 103 greater,
but the information being provided about the stress-strain response of
the material is the same, provided the volume being interrogated is in
both cases large enough to be representative of the bulk response.

The main requirement now, in order for procedures (and dedicated
software packages) to become widely accepted and employed, is clear
identification of the factors that affect sensitivities and efficient con-
vergence on “correct” solutions for inferred properties. There are sev-
eral key issues, concerning both experimental procedures and compu-
tational formulation. Some of these, including the development of
algorithms for convergence on best fit parameter combinations, have
been addressed by Isselin et al. (2006), while Karthik et al. (2012),
among others (Giannakopoulos and Suresh 1999; Taljat and Pharr
2004), explored the influence of friction, concluding that it has a sig-
nificant effect at penetration ratios above about 20%, particularly on
the residual indent shape. Other workers (Sun et al., 1999; Ullner et al.,
2010; Van Vliet, Prchlik et al. 2011) have drawn attention to the sig-
nificance of machine compliance in the context of indentation load-
displacement data. The present paper is aimed at examining all of the
main issues in some detail, including the relationships between the
experimental procedures and the numerical simulations. This is done
using a wide range of experimental indentation data, illustrating how
they are used in an automated way within software packages to obtain
the values of parameters in constitutive stress-strain laws.

2. Experimental issues

2.1. Choice of indenter shape

There are several powerful motivations for using spherical in-
denters. One of these is that, since it is not a self-similar shape, the
stress and strain fields change qualitatively as penetration takes place.
Hence, the information being obtained over different depth ranges is
analogous to carrying out separate tests with different indenter shapes
(reducing the likelihood of different stress-strain curves giving very
similar load-displacement plots). This point has been clarified pre-
viously (Dean and Clyne 2017).

There are also more practical motivations. One is that a sphere is
much less prone to becoming damaged than are shapes having edges or

points, and is also easier to specify and manufacture. Spheres (of WC-
based cermets, with hardness and stiffness values high enough for most
purposes), having diameters in the preferred range of about 1–4mm
(see Section 2.2 below), are cheap and readily obtained. There is also
reduced risk with spheres of encountering the computational problems
that are often associated with simulation of behavior in regions of high
local curvature (edges or points).

Finally, at least with (approximately) isotropic materials, a spherical
indenter allows the FEM modeling to be radially symmetric (2-D),
which is not possible with many shaped indenters. The potential need
for very large numbers of iterative FEM runs makes this a more sig-
nificant issue than it would be under most other circumstances. All of
the work described in this paper relates to use of spherical indenters.

2.2. Length scale effects

It is important, when the objective is to extract bulk properties, to
indent on a suitable scale, while retaining the key advantages of being
able to test small, flat samples, to carry out point-to-point mapping of
properties etc. In particular, the volume being interrogated must have a
(stress-strain) response that is representative of the bulk. It is on this
meso‑scale (such that indents are large enough for representative ma-
terial response, but small enough to allow small samples and mapping)
that this type of work needs to be focused.

The minimum indent size for representative response depends on
microstructure, but in many cases it will require deformation of an
assembly of grains - at least about a dozen and preferably more. Only
when such an assembly is being deformed is it possible to capture the
influence, not only of the crystallographic texture of the material, but
also of the way that cooperative deformation of neighboring grains
takes place. This is likely to be affected, not only by texture, but also by
factors such as the ease of grain boundary sliding. Simply taking the
average of the load-displacement responses from indents made in a
large number of individual grains will not even approximately capture
the bulk response. (The same arguments would apply to carrying out
conventional uniaxial tests on a set of single crystal samples having
orientations representative of the texture of a polycrystal.) A crude rule
of thumb might be that, viewed on the free surface, the indent should
straddle at least “several” grains. Of course, the corresponding
minimum indent diameter might range from below 1 µm to above
1mm, but it will certainly be small enough in most cases to offer the
attractions outlined above.

Grain sizes of around 100 µm or more are, of course, common. In
general, therefore, indent diameters should be at least a few hundred
µm. This does require relatively large indenters (∼mm dimensions) and
therefore large loads (∼ hundreds of N, or even several kN), which may
be beyond the range of some indentation systems (but perhaps below
the commonly-used ranges of some conventional mechanical testing
systems). However, systems in this “intermediate” load range are in
general easier and cheaper to construct and use than either of the other
two types of system. Moreover, a relatively coarse scale of indentation
minimizes the problems associated with surface roughness, oxide films,
contamination etc.

There is also a further issue, which relates to the indenter pene-
tration depth, δ, as a ratio to the indenter radius, R. It might be ima-
gined that, while the load needed to penetrate to a given δ/R, and the
stresses in the material, would depend strongly on the material (hard-
ness), the strains would not. In fact, this is not really true, since ma-
terials with different work hardening characteristics tend to exhibit
significantly different plastic strain fields (for a given δ/R).
Furthermore, even if the peak strain is, say, 40%, the indentation re-
sponse will be considerably more sensitive to much lower strain regions
of the stress-strain curve, in which most of the plastic deformation takes
place. This issue is examined quantitatively in Section 5.4.1.
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2.3. Material anisotropy and homogeneity

Among factors of potential significance are anisotropy (different
responses in different directions of testing) and inhomogeneity (dif-
ferent responses in different parts of the same sample). Of course, this
also applies to other types of testing, including conventional uniaxial
loading, but some differences are expected between that case and in-
dentation. Firstly, indentation is expected to be more suitable for ex-
ploring point-to-point variations in properties - indeed, this is one of its
key attractions. This can be taken down to a very fine scale, examining
the responses of individual phases or thin surface coatings, although
attention is being focused here on testing of volumes sufficiently large
to ensure a representative “bulk” response. Nevertheless, the bulk re-
sponse could vary significantly between different parts of a relatively
large sample or component and indentation is expected to be suitable
for exploring this.

Anisotropy is a slightly different issue. It can arise in several ways in
different types of material, but the commonest cause, at least in metallic
polycrystals, is crystallographic texture. Most metallic samples are
textured, at least to some degree, and this will, in general, lead to both
elastic and plastic anisotropy. Properties such as Young's modulus and
yield stress often vary by up to 10%, and sometimes considerably more,
in metallic samples. (Of course, the extreme case of strong texture is a
single crystal and, depending on the crystal structure and a number of
other factors, very large elastic and plastic anisotropies can be observed
in these.) These variations may be significant compared with the level
of precision being sought in the inferred plasticity parameters.

Conventional uniaxial testing will clearly provide information about
the anisotropy of a material (provided samples can be obtained that are
suitable for testing the material in different directions, which may be
difficult in some cases). It is not, however, immediately clear whether
the indentation response of an anisotropic material will be significantly
different in different directions. Certainly both stress and strain fields
are much more multi-axial than in conventional testing, particularly for
relatively deep penetration. The expectation might therefore be for
volume-averaged responses for all indentation directions. However, this
is not obvious and the present work encompasses an attempt to explore
the issue.

The main way in which this is being done here is to focus on testing
of extruded rod. Such samples can be anisotropic and/or in-
homogeneous (on a fairly coarse scale). Of course, the grain structure,
including the associated texture, will depend on several factors. In fact,
extruded rods often exhibit stronger (and simpler) textures than, say,
rolled sheet or plate. For the rods used in the current work, axial and
radial samples were obtained for uniaxial (compression) testing.

3. Experimental procedures

3.1. Sample preparation

The extruded rods were all obtained from commercial suppliers.
They were aluminum (“Dural”), brass (α/β), copper (OFHC) and a low C
steel, with respective diameters of 20mm, 16mm, 25mm and 20mm.
A further material (with a low hardness) was produced by machining
Cu rod down to 16mm and annealing it (in a sealed ampoule), to in-
duce recrystallization. For uniaxial testing, samples in the form of cubes
of side 5mm were produced by electrical discharge machining (EDM).
Surfaces for indentation were in most cases polished to a finish of 1 µm,
using an automatic system to ensure that the polished face was accu-
rately parallel with the base. Particular care was needed with the an-
nealed copper, which was very soft. Most surface preparation proce-
dures tend to leave a work-hardened layer, although this is naturally
more noticeable for soft materials. In the present case, indentation was
relatively deep (∼200–400 µm), so a layer a couple of µm or so in depth
would have little effect. However, this would not necessarily be true for
a layer 5–10 µm deep, which could readily be produced on a very soft

material. For the annealed Cu, therefore, prolonged and careful pol-
ishing on a 0.25 µm cloth was employed.

The grain structures of the rods were all examined, using optical and
scanning electron microscopy. The grain sizes varied appreciably,
within and between the different rods, but they were all no larger than
about 100 µm (in transverse section). For the indenter size used (see
Section 3.3), the deformed volume thus contained a large number of
grains in all cases.

3.2. Uniaxial testing

Conventional uniaxial testing (in compression) was carried out at
room temperature (22 °C ± 2 °C), using an Instron 3367 screw-driven
testing machine. A load cell with a capacity of 30 kN was employed.
Testing was carried out under displacement control, at a rate of
10 µm s−1. Since they were 5mm thick, tests took about a minute and
the strain rate was of the order of 10−3 s−1. This is taken to be a quasi-
static rate (such that a very similar material response would be obtained
if it were either increased or decreased quite substantially), confirmed
via a series of trials for all of the materials used in the current work.
Several repeat tests were carried out in all cases. Both stress and strain
levels were converted from nominal to true values for comparison with
indentation-derived curves.

Samples were compressed between rigid (hardened steel) platens,
using MoS2 lubricant to minimize barreling. In practice, there will al-
ways be at least some friction between sample and platen, which could
possibly have an effect on the stress-strain curve (cause a rise in the
apparent work hardening rate), particularly at relatively high strains
(>∼10%). However, in the current work this effect was probably
small. The displacement was measured using an eddy current gauge
having a resolution of about± 0.25 µm. It was attached to the upper
platen and actuated against the lower one. Any error arising from
(elastic) deformation of the platens is unlikely to be significant and
there was no need for any compliance calibration.

3.3. Indentation testing

The indentation testing was carried out using the same testing
machine (and eddy current gauge) as for uniaxial testing, and also si-
milar displacement rates. A spherical indenter of radius 1mm was
employed, made of a WC-Co cemented carbide (cermet). This sphere
was located in a matching recess in a steel housing, where it was se-
cured by brazing. The set-up is depicted in Fig. 1. Compliance cali-
bration was needed, since it's important in work of this type that the
displacement data should be obtained under conditions that correspond
closely to those being simulated in the model. The compliance was
measured by pushing the indenter into a matched recess (about 500 µm
deep) in a 5mm thick plate of alumina, the recess having been created
via abrasive rotational honing with the same type of indenter as that
used in the tests. After a short bedding-down regime, this gave a linear
plot (i.e. constant compliance) and this gradient was subtracted from
indentation load-displacement plots. (The contribution to the com-
pliance from the alumina plate itself is considered to be negligible.)

This calibration coped with the compliance of the housing, in-
cluding the braze layer between indenter and housing, and also that of
the top half of the indenter. (It would also cope with the compliance of
other parts of the loading train, in cases for which that was significant).
However, it did not compensate for the (elastic) deformation of the
bottom half of the indenter, which could be significant in the early
stages of indentation (when the contact area is small and the stresses
and strains in the indenter could be relatively large). This part of the
indenter was therefore included in the modeled domain, as shown in
Fig. 1. This has the minor advantage that stresses in the indenter are
being monitored, so it is possible, for example, to check on whether
there might be any danger of it undergoing plastic deformation.

The compliance measured in this way was fairly small
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(∼5 µm kN−1), so this was only a relatively minor correction. Other
set-ups could be much more compliant, making this correction critical
to the successful extraction of reliable property parameters.

3.4. Residual indent topography

A Taylor Hobson (Talysurf) profilometer (i.e. a contacting stylus),
with a wide-range inductive gauge and 2 µm radius cone recess tip, was
used to measure residual indent profiles. Scans were carried out in two
perpendicular directions, both through the central axis of the indent.
The height resolution of these scans is about 2 µm. Tilt correction
functions were applied to the raw data, based on the far-field parts of
the scan being parallel. The average profile from the two orthogonal
scans was used for comparison with predicted profiles.

4. Computational issues

4.1. Constitutive plasticity laws

4.1.1. Background
For any approach involving iterative simulation of a deformation

process, the stress-strain relationship (material plasticity response)
must be characterized via a (small) set of parameter values. Of course,
for a single simulation, it would be possible to use an arbitrary set of
stress-strain data pairs, but when the objective is to infer the optimal
relationship consistent with obtaining a particular outcome, this leaves
too many degrees of freedom for tractable convergence, so a functional
form (involving a relatively small number of parameters) is required. In
fact, several expressions are in common use, some of them described in
the following sections. It should be emphasized that these are all purely
empirical relationships. There have been many efforts to rationalize
stress-strain curves in terms of microstructural features (and their effect
on dislocation mobility, which is at least the primary factor determining
the ease of plastic deformation in metals). However, the concept of
predicting stress-strain curves on the basis of identifiable features has
not proved to be workable and the formulations in use are simply based
on empirical fitting to experimental data.

A further point worthy of note concerns the possibility of asym-
metry between (uniaxial) stress-strain curves obtained in tension and in
compression. Any difference between the two is in principle indicative
of a dependence of yielding (and subsequent progression of plastic
straining) on the hydrostatic component of the stress state. In general,

while differences are sometimes observed, they are normally due only
to experimental difficulties - often associated with barreling (com-
pression) or necking (tension). Genuine asymmetry is very rarely ob-
served, at least for metals. This is consistent with the incompressibility
of metals, the nature of metallic bonding and the main mechanisms of
plastic deformation. The shear stress needed to cause dislocation glide
(and also deformation twinning, which is significant in some cases) is
effectively independent of the hydrostatic stress and so the uniaxial
stress-strain relationship is expected to apply under any stress state,
provided attention is focused on the deviatoric (von Mises) stresses and
strains. This is implicit in virtually all FEM modeling of metal de-
formation.

4.1.2. Ludwik–Hollomon
Arguably the most common stress-strain relationship, and one that

has been in use over an extended period (Hollomon 1945), is that
usually designated the Ludwik–Hollomon equation:

= +σ σ Kɛn
Y p (1)

where σ is the (von Mises) applied stress, σY is its value at yield, εp is the
plastic (von Mises) strain, K is the work hardening coefficient and n is
the work hardening exponent. A power law of this type is consistent
with strain hardening being mainly caused by the increasing density of
dislocations (impairing their mobility as more jogs, tangles etc. are
formed), but with a hardening rate that falls off with continued
straining (as the dislocation density approaches a saturation level). The
fact that no power law expression actually allows complete saturation
(a plateau stress) can lead to problems with this formulation, particu-
larly at high strain levels. It can be seen that there are 3 parameter
values in the general case.

4.1.3. Voce
The Voce relationship (Voce 1948) is commonly expressed in this

form:

⎜ ⎟= − − ⎛
⎝

− ⎞
⎠

σ σ σ σ exp( )
ɛ

ɛs s Y
p

0 (2)

where σ is the (von Mises) applied stress, σY is its value at yield and εp is
the plastic (von Mises) strain. The stress σs is a saturation level, while ε0
is a characteristic strain for the exponential approach of the stress to-
wards this level. This formulation thus simulates the competition be-
tween dislocation creation and annihilation reaching equilibrium (no

Fig. 1. Schematic of indentation testing set-up, showing the mesh used in the FE model.
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further hardening) at sufficiently high strain levels (Mecking and Kocks
1981; Estrin and Mecking 1984; Sainath et al., 2015), although in
practice the approach to this condition often does not conform very
well to an exponential curve. In this case also, there are 3 unknown
parameter values.

4.1.4. Other relationships
A number of other stress-strain relationships have been proposed,

some aimed primarily at non-metallic systems such as polymers and
rubbers. Some, such as that of Ramberg–Osgood, are oriented towards
cyclic loading and a focus on the transition between elastic and plastic
deformation (Skelton et al., 1997). There are others, such as the Lud-
wigson relationship, as described, for example, in Samuel and Ro-
driguez (Samuel and Rodriguez 2005), that are effectively combina-
tions of the above two, but involve more parameters and hence are
likely to slow down convergence considerably. While there could be a
motivation in some circumstances for exploring a wider range of for-
mulations than the above two, in general the stress-strain curves of
most metallic materials can be captured reasonably well using at least
one of these two equations.

4.1.5. Strain range
There is also the issue of the range of strain over which a re-

presentation is required, or is likely to be reliable. In practice, it is not
usually either necessary or viable for levels above about 25% to be
considered, although indentation testing is much better suited than
uniaxial testing (tension or compression) to the reliable generation of
higher strains than this and, if there is interest in the material response
in this regime, it should probably be studied solely via indentation. In
fact, the uniaxial (compressive) stress-strain curves presented here may
not be entirely reliable beyond strains of about 10%, since the apparent
work hardening rate could be raised slightly in this regime by the effect
of friction.

Of course, in addition to plasticity characteristics, there may be
interest in how damage and failure (crack propagation) might occur
when strains start to get relatively large. However, despite various as-
pirations in this direction, there are severe limits to the information of
this type that might be obtainable via indentation testing.

4.2. FEM Formulation, meshing and boundary conditions

4.2.1. Mesh specification
An axi-symmetric FEM model was employed, based on the mesh

illustrated in Fig. 1. There are about 5000 volume elements, all second
order quadrilateral and/or triangular. The mesh was refined in regions
of the sample close to the indenter, as shown. Sensitivity analyses
confirmed that the meshes employed were sufficiently fine to achieve
convergence, numerical stability and mesh-independent results. The
complete sample was included in the simulation, with its lower surface
rigidly fixed in place. In modeling the complete sample, contributions
to the displacement caused by its elastic deformation, as well as plastic
deformation, are fully captured. In fact, the sample thickness is not
important beyond a depth of about 5 indenter diameters, since the axial
stress - and hence the elastic strain - below that becomes negligible for
typical cases. The lateral extent, beyond about 2 or 3 indent diameters,
is also unimportant.

4.2.2. Effect of interfacial friction
The effect of interfacial friction is routinely simulated via a coeffi-

cient of friction, μ, such that sliding between the two surfaces requires a
shear stress, τ, given by

=τ μσn (3)

where σn is the normal stress at the interface. The value of μ is expected
to depend on the surface roughness of indenter and sample, and cannot
be predicted a priori. It may also be noted that new sample surface is
created during indentation. Modeling experience showed that the pre-
dicted behavior can be fairly sensitive to the value, particularly as the
penetration ratio starts to become relatively large (>∼10%). The
value of μ was therefore regarded as adjustable, so as to allow im-
provement of the fit between experimental and predicted load-dis-
placement plots. (As mentioned in Section 4.3.1 below, it could have
been included in the set of parameters to be iteratively optimized
during convergence, but this was not done in the current work and it
probably isn't necessary in most cases: in practice, it was found that best
fit was usually achieved with a value of around 0.2, suggesting that this
is typical of the effect of friction during experiments of this type.)

4.2.3. Input and output data
The input data included the elastic constants of the materials ex-

amined, plus those of the cermet. All were assumed to be isotropic. The
values employed are listed in Table 1. The Young's moduli were mea-
sured directly, using an ultrasonic resonance system, although in all
cases the values obtained were close to those in standard handbooks.
Poisson ratio values were taken directly from handbooks. The simula-
tion runs were carried out under displacement control, so the output
was predicted loads at a series of (∼50) specified displacement values
over the range concerned. The residual indent shape, and the sur-
rounding fields of residual stress and plastic strain, were also predicted
in each case.

An investigation has also been made into how the plastic work is
distributed in terms of prior strain. After each increment of strain, for
each volume element, the stress, incremental strain and prior strain are
recorded. The work done during that increment is evaluated
(= stress× strain× volume) and that increment of work is associated
with the strain concerned. Expressed mathematically, the increment of
work done in the jth volume element during the kth increment of strain
can be written

=W σ vΔ Δɛj k j k j k j, , , (4)

Clearly, the work done during the kth strain increment is given by

∑=
=

=

W WΔ Δk
j

j M

j k
1

,
(5)

where the summation is over the total number (M) of volume elements,
and the total work done is

∑=
=

=

W WΔtot
k

k T

k
1 (6)

with this summation being over the total number (T) of strain incre-
ments. The total strain range is divided into a number of sub-ranges
(bins) and the work done within each bin is then evaluated after a
binning operation. This can be expressed as

∑ ∑=
=

=

=

=

W W f(Δ )bin p
k

k T

j

j M

j k j k p,
1 1

, , ,
(7)

where fj,k,p is a function ascribed a value of 1 or 0, depending on
whether the strain associated with the increment of work ΔWj,k does or
does not fall within the range of the pth bin.

Table 1
Values of elastic constants used as input data.

Material Young's modulus, E (GPa) Poisson ratio, ν (-)

Al 68 0.33
Brass 107 0.33
Cu (both) 117 0.33
Low C steel 210 0.3
Cermet 650 0.21
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4.3. Convergence procedure

4.3.1. Quantification of the goodness-of-fit
The procedure used in the current work to quantify the goodness-of-

fit between predicted and target indentation outcomes was least
squares regression. This is popular for optimizing a set of model para-
meter values, by quantifying the fit between the modeled values of a
scalar variable and corresponding expected values (Riley et al., 2006).
These are the parameter values that minimize the sum of the squares of
the residuals, which are the differences between expected and modeled
values of the variable.

For the current work, the main outcome is a load-displacement plot,
the variable is the load (as a function of displacement) and the para-
meters are those in the selected constitutive law for material plasticity.
It would also be possible to include in this set other parameters that
influence the indentation process, such as the coefficient of friction,
although that has not been done for the results presented here. It may
also be noted that other outcomes could be used, either alternatively or
additionally. For plasticity, the other outcome that is likely to be used is
the residual indent shape (indent depth as a function of radial location),
although again that has not been done in the current work.

More generally, when other material properties are being sought,
there are several options concerning the outcomes that might be ob-
tained from experiment. For example, in the recent work of
Burley et al. (2018), aimed at evaluating a strain rate sensitivity para-
meter from ballistic indentation experiments, both displacement-time
and residual indent shape datasets were used as outcomes. Having more
than one outcome can complicate the convergence procedure, al-
though, in that particular case (with just a single material property
parameter to evaluate), simple linear scans in parameter space allowed
rapid identification of optimum values.

The sum of the squares of the residuals, S, can be expressed:

∑= −
=

S P P( )
i

N

i i
1

,M ,E
2

(8)

where Pi,M is the ith value of the modeled displacement (predicted by
FEM) and Pi,E is the corresponding experimental (target) value. The
value employed for N was around 50. Perfect fit will lead to a value of
zero for S. Since S is dimensional, it has units and its magnitude cannot
be used to give a universal indication of the quality of the fit. For this
purpose, the quantity Sred, a “reduced sum of squares” is used, defined
by

=
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where Pav,E is the average of the experimentally-measured loads (across
the range of displacements being used) and N is the total number of
displacement increments. The parameter Sred is a positive dimensionless
number, with a value that ranges upwards from 0 (corresponding to
perfect fit). As a generalization, modeling that captures the material
plasticity response reasonably well should lead to a solution (set of
parameter values) for which Sred is less than, say, 10−3. This effectively
constitutes a health check on the solution - if, for example, no solution
can be found giving a value smaller than, say, 1%, then this suggests
that there can only be limited confidence in the inferred set of values.
This could be due to experimental deficiencies and/or an inability to
capture the behavior well with the constitutive law being used. In fact,
during the work described here, solutions with Sred values around 10−4

or below were found in all cases.

4.3.2. Searching of parameter space
When there is no analytical relationship between experimental

outcomes and parameter values, which is clearly the case here, the best-

fit set of values must be estimated by iterative improvement, using a
search algorithm. The algorithm used in the current work is the
Nelder–Mead simplex search (Nelder and Mead 1965), which has been
chosen in view of its robustness and adaptability, particularly with
respect to noise. The Nelder–Mead search procedure used here is based
on the implementation by Gao and Han (2012), and is built using the
Scientific Python and Numeric Python packages (Oliphant 2007;
van der Walt, Colbert et al. 2011).

For a model with m parameters, searching is within an m-dimen-
sional parameter space, within which a simplex is defined. This is a
polytope with (m+1) vertices (i.e. a triangle in 2-D, a tetrahedron in 3-
D etc.). Each vertex corresponds to a particular combination of all of the
m parameters in the set and the simplex covers a range of values for all
of these. These points can be expressed as vectors (first rank tensors) in
parameter space, designated x1, x2,…xm+1, each of which consists of a
set of m parameter values. After each iteration (new set of FEM simu-
lations), the objective is to “improve” the simplex by replacing the
worst vertex (i.e. the one with the highest value of S) with a better
point. The search for this better point is along a line in parameter space
defined by the worst point and the centroid of the rest of the simplex,
which is the average position of the remaining points (after removal of
the worst point). The steps involved in the algorithm are described in
the Appendix.

4.3.3. Convergence on the optimal solution
The algorithm is terminated once a specified convergence criterion

has been met. This can be defined as a relative difference (commonly
10−4) in S and/or x between successive iterations. In the present work,
this requirement was applied to both S and x. The number of iterations
to achieve convergence depends on a number of factors, in addition to
this criterion specification. These mostly relate to the way that the
goodness of fit varies in parameter space, which in turn depends on
several issues (including how well the stress-strain curve can be cap-
tured by the selected constitutive law). There may in some cases be a
danger of converging on a local minimum. Difficulties can also arise
from the presence of “plateau regions”, where various parameter value
combinations give very similar degrees of fit. In general, however, it has
been found that the algorithm employed performs well in this context –
see Section 5.3.

Overall, the computational operation is tractable in most cases. The
procedure could, however, be facilitated if the starting values for the
simplex were in an appropriate region of parameter space - i.e. if the
initial trial values are fairly close to the best solution set. Otherwise, the
number of iterations for convergence may go up significantly. One way
of ensuring that these starting values are at least in the right part of
parameter space would be to generate a pre-run matrix of simulations,
and resultant load-displacement plots, and simply select the one giving
the best fit (lowest S value). One drawback of this is that all such “pre-
running” would need to be done for specified values of certain para-
meters that are not in the set being searched, notably the elastic con-
stants of the material and the friction coefficient. It would also need to
be done for at least two constitutive laws. However, provided the “pre-
run” matrix is a relatively coarse one, it would not be a prohibitive
operation to do this for several values of those parameters.

5. Illustrative results

5.1. Stress-Strain curves and effects of anisotropy

An initial check was made on the homogeneity of the rods, since any
significant heterogeneity would clearly need to be taken into account.
This was done using simple Vickers hardness measurements. The out-
come is shown in Fig. 2(a), where it can be seen that, in all cases, there
was little or no variation with radial location. Representative uniaxial
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stress-strain plots (in both axial and radial directions) are shown for all
5 metals in Fig. 2(b). For Cu (both as-received and annealed), little
anisotropy is exhibited between these two directions. For the brass, the
yield stresses are similar in the two directions, but the work hardening
is significantly different. For the Al, the yield stresses differ slightly, but
work hardening is similar. For the low C steel, both yield stress and
work hardening differ. Furthermore, there is no systematic trend re-
garding which of the two directions is harder. It might be possible to
rationalize these characteristics in terms of the nature and strength of
the textures in each case, although this would require further char-
acterization.

For present purposes, it should just be noted that this set of mate-
rials exhibits a wide range of plasticity responses, with yield stresses
from ∼50 to ∼600MPa and average work hardening rates (up to
∼15% strain) varying from below 100MPa (Al and as-received Cu) to
well over 1000MPa (brass). Also, for the annealed Cu, the flow stress
rises by 400% over this strain range - i.e. work hardening is highly
significant - whereas for the Al the relative increase is only about 20%.
Moreover, the shapes of the work-hardening curves vary significantly.
Such a set of curves provides an excellent test for the reliability of a
methodology for their inference from indentation data.

5.2. Outcomes of indentation experiments

The main outcomes are load-displacement plots from indents made
at various locations on transverse sections of the 5 rods. These were all
more or less independent of radial position, which is consistent with the
hardness data shown in Fig. 2(a). Representative plots are shown in
Fig. 3(a). In addition to the excellent reproducibility of these data, it
should be noted that, for any given material, the plots obtained by in-
denting radially were very similar to those obtained on transverse
sections. Both of these points are illustrated by the plots shown in
Fig. 3(b). In view of the significant anisotropy apparent in the uniaxial
stress-strain curves (Fig. 2(b)) of some of these materials (particularly
the low C steel, for which the indentation comparison is shown in
Fig. 3(b)), this outcome confirms that indentation responses are highly-
multi-axial. The implication is that indentation, perhaps particularly
when carried out to high penetration ratios, will lead to inferred stress-
strain curves that are averages of those obtained uniaxially in different
directions. While this might be regarded as a limitation in some re-
spects, it does mean that there need be no concern about the direction
in which indentation is carried out.

Fig. 2. (a) Vickers Hardness numbers, as a function of radial location on
transverse sections and (b) stress-strain plots, from compressive loading in both
axial and radial directions.

Fig. 3. Sets of indentation load-displacement data, comparing: (a) averaged
plots from transverse sections and (b) individual plots for the Al (axial), to-
gether with axial and radial average plots for the low C steel.
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5.3. Inferred stress–strain curves

A comparison (for all 5 metals) is shown in Fig. 4 between uniaxial
stress-strain plots (axial and radial) and those obtained via Nelder–-
Mead convergence on best-fit parameter combinations. This has been
done using both Ludwik–Hollomon and Voce expressions for all 5 me-
tals. The plots in Fig. 4(a) show only L-H predictions, while those in
Fig. 4(b) show both. It can be seen that the level of agreement is very
good. It could be quantified in several ways, but in all cases the pre-
dicted curves are within about± 5% of the average of the axial and
radial uniaxial plots, over the complete strain range. This is certainly
acceptable for most purposes and indeed it might be argued that uni-
axial data can rarely be considered reliable to higher precision than
this. In general, similar inferred stress-strain curves were obtained using
the two constitutive laws, although, as can be seen for the low C steel
(Fig. 4(b)), they do sometimes have slightly different shapes. It's cer-
tainly recommended that alternative expressions be explored, since
there may be cases for which one or the other gives noticeably better
consistency with experimental (indentation) data.

The convergence procedure generally required only a relatively
small number (a few tens) of iterations, although of course this does

depend on the level of accuracy being sought. Some features of the
convergence are apparent in Fig. 5, where it can be seen how the
movement through parameter space took place for one of these mate-
rials. The starting values were selected in a fairly arbitrary way and, as
can be seen, they were not very close to the optimized values in this
case. If they happened to be either very close to, or to differ sub-
stantially from, the optimized set, then that would affect the efficiency
of the convergence. However, there would not, in general, be very
much difference between the number of iteration required in the two
cases. On the other hand, there will always be a requirement for more
than just a few iterations, even if the starting positions are quite close
(obtained, for example, by scanning a pre-run set).

All of the inferred parameter values are shown in Table 2. Also
shown are σY values from HV numbers, obtained via the commonly-used
approximation σY ∼ HV/3 (with HV, expressed in MPa, being averages
of the values shown in Fig. 2(a)). As might have been anticipated, these
are at least in the right general vicinity for the materials that exhibit
relatively little work hardening (Al, Cu and low C steel). However, for
the other two materials (brass and annealed Cu), which work-harden
quite strongly, they are massive over-estimates. Of course, a yield stress
obtained from a hardness measurement should never be regarded as
better than semi-quantitative.

5.4. Sensitivity issues

5.4.1. Penetration ratio
A key issue concerns the penetration ratio (δ/R) necessary to sample

the stress-strain characteristics of the material to sufficiently high levels
of strain. Clearly, if the plastic strains created beneath the indenter do
not extend beyond a few %, then the outcome will not be sensitive to
the work hardening characteristics. Moreover, the levels of strain cre-
ated at a given (δ/R) do depend on the work hardening characteristics.
This is illustrated by the strain fields shown in Fig. 6, which are for 40%
penetration into the as-received and annealed copper. It can be seen
that, while the peak strains are ∼150% for the as-received Cu, they are
only ∼60% for the annealed Cu. This is because the more pronounced
work hardening of the latter leads to the strains becoming significant in
a larger surrounding region, while limiting the peak levels close to the
indenter. It can also be seen that the two residual indent shapes are very
different, with considerably more “pile-up” in the material that does not
work harden much. It follows that, for a material that exhibits pro-
nounced work hardening, deeper penetration is advisable, in order to
interrogate higher strain regions of the stress-strain curve.

There is, of course, more to this than just the issue of peak strain
levels. The real requirement here is an insight into how much of the
deformation (that influenced the indentation response) took place in
different regimes of strain. Information of this type (obtained using the
methodology described in Section 4.2.4) is presented in Fig. 7, with
Fig. 7(a) and (b) showing fractions of the plastic work done, as a
function of the strain at which it took place, in the two Cu materials, for
3 different (δ/R) ratios. Also shown (Fig. 7(c)) is a plot of the average
strain at which the plastic work was done, for all of the metals, as a
function of (δ/R). These average strains tend to be lower, at a given (δ/
R), for metals that exhibit greater work hardening. A general conclusion
of studies of this type is that, in order to be confident of ensuring an
indentation outcome that is suitably sensitive to behavior over the
strain rage of interest (up to ∼20%), with no prior knowledge of the
material plasticity characteristics, a penetration ratio of ∼40% is re-
commended.

There is also interest in the stress fields generated during

Fig. 4. Comparisons between experimental stress-strain curves (axial and radial
directions) and corresponding plots of constitutive laws, using the parameter
values obtained by iterative comparison between measured and modeled in-
dentation load-displacement data - see Table 2. These comparisons are shown
for (a) Al, Cu and annealed Cu, and for (b) brass and low C steel.
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indentation, partly in terms of the possibility of the indenter under-
going plastic deformation. An illustrative example is presented in Fig. 8,
which shows the von Mises stress field, at a penetration ratio of 25%,
for the low C steel. These stress levels correspond to the flow stress for
the local level of plastic strain. In the immediate vicinity of the in-
denter, these levels are∼700–900MPa, corresponding to plastic strains
of several tens of % (see Fig. 4(b)). The stresses in the indenter are also
worth noting. They reach levels approaching 2 GPa in this case - this is
expected to be below the yield stress of the cermet, but is nevertheless a
substantial stress. Use of a steel for the indenter, rather than a cermet, is
not recommended, partly because such stress levels could cause plas-
ticity and partly because the much lower stiffness (∼200 GPa, com-
pared with ∼650 GPa for a cermet) means that displacements due to

elastic deformation of the indenter will be larger and more likely to
constitute a significant source of potential error.

5.4.2. Coefficient of friction
It is difficult, if not impossible, to directly measure a coefficient of

friction under the conditions of an indentation test (during which new
sample surface is being continually created). It's also difficult to vary
the value in any systematic way - both indenter and sample are ex-
pected to be smooth and, since the contact pressure is high, it is not
practicable to introduce lubricant. However, it is straightforward to
vary the value employed in the model and explore the effect that this
has. This has been done in the present work using both load-displace-
ment data and residual indent profiles. The latter are particularly well-

Fig. 5. Nelder–Mead convergence on an optimal (Ludwik–Hollomon) parameter set, targeting a load-displacement plot from indentation of a brass sample, showing
the evolution with iteration number of: (a) the goodness-of-fit parameter, Sred, (b) yield stress, (c) work hardening coefficient and (d) work hardening exponent.

Table 2
Inferred plasticity parameter values.

Metal HV-derived yield stress,
σY (MPa)

Ludwik–Hollomon Voce

Yield stress, σY
(MPa)

WH Coefficient, K
(MPa)

WH Exponent n
(-)

Yield stress, σY
(MPa)

Saturation stress, σs
(MPa)

Characteristic strain, ε0 (-)

Al 351 312.8 204.4 0.565 325.9 518.5 0.455
Brass 425 290.4 661.7 0.608 311.1 885.6 0.374
Cu 272 213.1 263.8 0.626 218.3 315.6 0.145
Cu (anneal) 143 47.9 428.6 0.590 55.9 358.4 0.232
Low C steel 618 571.8 274.9 0.497 553.1 778.1 0.112
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suited to this kind of cross-checking, since they are slightly more sen-
sitive to the value of μ than are load-displacement plots.

Such comparisons are shown in Figs. 9 and 10, which relate to both
as-received and annealed copper samples. These two materials differ
quite substantially in their work hardening characteristics and the
comparisons highlight some of the effects of work hardening on the
outcomes. Fig. 9 shows load-displacement plots, while Fig. 10 relates to
residual indent profiles. Two points are immediately clear from study of
these two figures. One is that neglecting friction (μ=0) leads to sig-
nificantly different behavior from that predicted for higher values,
particularly at relatively high penetration ratios. The other is that,
provided μ is at least about 0.2, increasing it further does not make
much difference. Moreover, a value of about 0.2 gives good agreement
between prediction and experiment for all of the cases studied here.
Physically, this may correspond to a value of this order being sufficient
to cut interfacial sliding down to a low level for these cases. This is
convenient, since it means it's probably acceptable to simply set μ to
some suitable value, such as 0.2, which has been used in all of the work
presented here. It should be mentioned, however, that higher values
could be appropriate under some circumstances, and could affect the
behavior. This is an area requiring further work.

6. Conclusions

The following conclusions can be drawn from this work:

(a) The methodology of iterative FEM simulation of the indentation
process, with systematic comparison between experimental and
predicted outcomes, is basically sound and can in principle be used
to infer various mechanical properties. While the present work is
focused on plasticity, the approach is also applicable to others, such
as creep and superelasticity. It will always be necessary to use a
constitutive law of some type, with the objective being to evaluate
the parameters in such an equation.

(b) The current work has involved detailed study of experimental and
computational aspects of how this methodology can be optimized
(for plasticity). It is already recognized that yielding and work-
hardening characteristics of most (metallic) materials can be well

captured by at least one of the two most commonly-used con-
stitutive laws (Ludwik–Hollomon and Voce), both of which in-
corporate 3 parameter values. Finding the set of these values that
best captures the behavior thus requires searching 3-D parameter
space for the location where predicted outcomes of an indentation
test match the corresponding experimental outcomes most closely.
However, the friction coefficient, μ, during indentation is a further
parameter that needs to be included in this optimization. It is shown
here that neglect of friction will often introduce a significant error.
On the other hand, it appears that, above ∼0.15, the effect of it
being changed is small. A value of 0.2 has been used in all of the
results presented here.

(c) The prime outcome used in the current work has been the load-
displacement plot obtained during testing (with a spherical in-
denter), although the residual indent shape has also been used. An
important deduction is that, in order to obtain outcomes that are
reasonably sensitive to the work hardening characteristics, rela-
tively deep indenter penetration is required. The penetration ratio,
δ/R, should be at least ∼25% and preferably ∼40%. The other key
issue relating to scale is that the sample volume deformed during
the test must be large enough to capture the “bulk” response, which
usually means that it must contain a sizeable number of grains
(perhaps>∼20). This leads to a requirement for relatively large
indenters (∼ mm range) and loads (∼kN range).

(d) The requirement to use relatively large indenters and loads means
that many “nano-indenter” systems are not well suited to this
methodology. On the other hand, it also means that the experi-
mental procedures are simpler, more transparent and less tem-
peramental than in many fine scale systems. Surface preparation is
straightforward - a standard polish to a roughness of a few microns
is fine - and there need be few concerns about the effects of oxide
layers or surface contamination. Furthermore, obtaining suitable
indenters is easy and cheap - cermet spheres in this size range are
readily obtainable. Displacement measurement must be accurate,
although, again, the relatively coarse scale of the operation means
that ultra-high precision is not needed and a standard eddy current
gauge or LVDT should be adequate.

(e) It is, however, important that conditions during indentation -

Fig. 6. Predicted plastic strain fields after indentation to a penetration ratio (δ/R) of 40% for as-received and annealed Cu.
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particularly the displacement measurements - should closely reflect
those simulated in the FEM model. Meshes in software packages for
universal use are likely to incorporate only the sample (the exact
dimensions of which are not important), perhaps plus the lower half
of the indenter. This does mean that a compliance calibration must
be applied to indentation load-displacement data. This should in-
clude the compliance of the (upper half of the) indenter and its
housing, although in many cases this will constitute only a small
correction. Other parts of the loading train, however, may in some
systems have a relatively large compliance and this must be sub-
tracted. (This also applies to accurate measurement of stress-strain
curves by conventional uniaxial testing.)

(f) Information is also presented about the computational approaches
and algorithms. Searching of plasticity parameter space is done on

Fig. 7. Fractions of the total work done in different ranges of strain during
penetration to 3 different depths into: (a) as-received Cu, (b) annealed Cu, plus
(c) average plastic strains for all materials, as a function of the penetration.

Fig. 8. Predicted distribution of the von Mises stress during indentation of the
low C steel, with the penetration ratio having reached 25%. For a 1mm radius
indenter, the applied load at this point would be 3.25 kN.

Fig. 9. Comparison between experimental load-displacement plots and corre-
sponding model predictions, obtained using the plasticity parameter values in
Table 2 and the μ values shown in the legend, for (a) as-received Cu and (b)
annealed Cu.
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the basis of a goodness-of-fit parameter and the current work has
involved minimizing S (the sum of the squares of the residuals). It is
shown that an adaptation of the Nelder–Mead simplex search al-
gorithm is efficient in converging fairly rapidly on the best-fit

solution. Computing time requirements will depend on a number of
factors, but the procedure is basically a tractable one, with “an-
swers” often obtainable in a matter of minutes (particularly if a
“pre-run” matrix of predicted outcomes is available).

(g) These methodologies have been applied to 5 different metals, all in
the form of extruded rods. Conventional uniaxial (compressive)
testing revealed that they cover a wide range of plasticity char-
acteristics. Some of them exhibit noticeable anisotropy. It is shown
that, for all of these materials, the procedure allows these char-
acteristics to be obtained (solely via indentation), with excellent
fidelity (± 5% over the complete strain range of interest - i.e. up to
∼15–20%). It should be noted, however, that indentation responses
are highly-multi-axial and will lead to inferred stress-strain curves
that are averages of those obtained uniaxially in different direc-
tions. This constitutes a limitation on the information obtainable by
indentation, although it does mean that there is no need for any
concern about the loading direction relative to the orientation of
the sample.

(h) Many of the concepts and approaches described here are already
incorporated into usable software packages, which are self-con-
tained in terms of FEM modeling and convergence capabilities.
Users are simply required to input appropriate experimental data.
In fact, there is already a website available (https://www.sempid.
com/about) where a capability of this type is described.
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Appendix: Nelder–Mead convergence algorithm

Once an initial simplex has been created, each iteration comprises the following steps.

1. The values of S are calculated for each vertex and the vertices are ranked, such that S(x1) < S(x2) < …< S(xm+1). The point to be replaced is
xm+1. The centroid of the (reduced) simplex is calculated from:

∑=
=

x x
m
1

j

m

jcen
1 (A1)

This defines the search direction (xcen - xm+1).
2. Reflection: A trial point is established by reflection of xm+1 through xcen.

= + − +x x x xα ( )mref cen cen 1 (A2)

where α is a scale factor. The value of S is calculated for this point. If S(x1) < S(xref) < S(xm), so that xref is of intermediate quality, then xref is
accepted, replacing xm+1. Otherwise, the algorithm proceeds to step 3.

3. Expansion: If S(xref) < S(x1), so that xref is the best point yet, this could indicate that the simplex is on an extended downward gradient and an
expanded point is trialed

Fig. 10. Comparison between experimental residual indent profiles and corre-
sponding model predictions, obtained using the plasticity parameter values in
Table 2 and the μ values shown in the legend, for (a) as-received Cu and (b)
annealed Cu.
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= + − +x x x xβ ( )mexp cen cen 1 (A3)

where β is a scale factor (> α). The value of S is calculated for this point. If S(xexp) < S(xref), then xexp is accepted, replacing xm+1. Otherwise,
xref is accepted, replacing xm+1.

4. Outside contraction: If S(xm) ≤ S(xref) < S(xm+1), so that xref is an improvement on xm+1, but would become the new worst point, the value of
S Is calculated for a point between xref and xcen, called the outside contraction point.

= + − +x x x xγ ( )mOC cen cen 1 (A4)

where γ is a scale factor (< α). The value of S is calculated for this point. If S(xOC)≤ S(xref), then xOC is accepted, replacing xm+1. Otherwise, the
algorithm proceeds to step 6.

5. Inside contraction: If S(xm+1) ≤ S(xref), so that xref is worse than all of the points in the existing simplex, then the value of S Is calculated for a
point between xcen and xm+1, called the inside contraction point.

= − − +x x x xδ ( )mIC cen cen 1 (A5)

where δ is another scale factor. The value of S is calculated for this point. If S(xIC) < S(xref), then xIC is accepted, replacing xm+1. Otherwise, the
algorithm proceeds to step 6.

6. Shrink: If none of the previous steps are able to improve the simplex, then it is shrunk towards the best vertex. This operation is defined by

′ = + −x x x xδ ( )j j j1 (A6)

for 2 ≤ j (m+1). The algorithm then starts the next iteration at step 1.

The scale factors (α, β, γ and δ) are often ascribed values of 1, 2, 0.5 and 0.5 respectively, but these can be tuned to cope with particular
situations, such as different levels of noise. The Scientific Python implementation allows for these scale factors to be adapted as the algorithm
proceeds, as described in Gao and Han (2012).
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